1	$2x^3 + 9x^2 + 4x - 15$	3	as final answer; ignore '= 0';	correct 8-term expansion:
				$2x^3 + 6x^2 - 2x^2 + 5x^2 - 6x + 15x - 5x - 15$
			B2 for 3 correct terms of answer seen or	correct 6-term expansions:
			for an 8-term or 6 term expansion with	$2x^3 + 4x^2 + 5x^2 - 6x + 10x - 15$
			at most one error:	$2x^3 + 6x^2 + 3x^2 + 9x - 5x - 15$
				$2x^3 + 11x^2 - 2x^2 + 15x - 11x - 15$
			or M1 for correct quadratic expansion of one pair of brackets;	for M1 , need not be simplified;
			or SCI for a quadratic expansion with	is SCI for knowing what to do and making a
			multiply by the remaining bracket	means more marks not available
			indupity by the remaining bracket	neurs note marks not available
2	$b^2 - 4ac$ soi	M1		allow seen in formula; need not have numbers
				substituted but discriminant part must be correct;
	1	. 1	D 2	
	1 www	AI	or B2	clearly found as discriminant, or stated as $b^2 - 4ac$, not
				just seen in formula eg M1A0 for $\sqrt{b^2} - 4ac = \sqrt{1} = 1$;
	2 [distinct real roots]	R1	B0 for finding the roots but not saying	condone discriminant not used: ignore incorrect roots
		DI	how many there are	found

3	yx + 3y = 1 - 2x oe or ft	M1	for multiplying to eliminate denominator <u>and</u> for expanding brackets, or for correct division by y <u>and</u> writing as separate fractions: $x+3=\frac{1}{2}-\frac{2x}{3}$;	each mark is for carrying out the operation correctly; ft earlier errors for equivalent steps if error does not simplify problem;
	yx + 2x = 1 - 3y oe or ft $x (y + 2) = 1 - 3y oe or ft$	M1 M1	y y for collecting terms; dep on having an <i>ax</i> term and an <i>xy</i> term, oe after division by <i>y</i> , for taking out <i>x</i> factor; dep on having an <i>ax</i> term and an <i>xy</i> term, oe after division	some common errors: $y(x+3) = 1 - 2x$ $yx + 3x = 1 - 2x$ $yx + 3 = 1 - 2x$ $yx + 3x = 1 - 2x$ $yx + 3 = 1 - 2x$ $yx + 5x = 1$ M1 ft $x(y + 5) = 1$ M1 ft $x = \frac{1}{y+5}$ M1 ft $x = \frac{-2}{y+2}$ M1 ft
	$[x=]\frac{1-3y}{y+2}$ oe or ft as final answer	M1	by <i>y</i> , for division with no wrong work after; dep on dividing by a two-term expression; last M not earned for triple- decker fraction as final answer	for M4 , must be completely correct;

4	n(n+1)(n+2)	M1	condone division by <i>n</i> and then	ignore ' = 0';
			(n + 1)(n + 2) seen, or separate factors	
			shown after factor theorem used;	
	argument from general consecutive numbers leading to:			an induction approach using the factors may also be used eg by those doing paper FP1 as well;
	at least one must be even	A1	or divisible by 2;	A0 for just substituting numbers for <i>n</i> and stating results;
	[exactly] one must be multiple of 3	A1		
			if MO:	
			allow SC1 for showing given expression always even	allow SC2 for a correct induction approach using the original cubic (SC1 for each of showing even and showing divisible by 3)

5	$5(x+2)^2 - 14$	4	B1 for <i>a</i> = 5, <u>and</u> B1 for <i>b</i> = 2
			and B2 for $c = -14$ or M1 for $c = 6 - 14$
			their ab^2 or
			M1 for [their <i>a</i>](6/their <i>a</i> – their b^2)
			[no ft for $a = 1$]

6	$[a=]2c^2-b$ www o.e.	3	M1 for each of 3 complete correct
			steps, ft from previous error if
			equivalent difficulty

7	$[a =] \frac{2(s - ut)}{t^2} \text{ o.e. as final answer}$ [condone $[a =] \frac{(s - ut)}{0.5t^2}$]	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty [eg dividing by t does not count as step – needs to be by t^2]	
			$[a =] \frac{(s - ut)}{\frac{1}{2}t^2}$ gets M2 only (similarly other triple-deckers)	3

8	any general attempt at <i>n</i> being odd <u>and</u> <i>n</i> being even even	M1	M0 for just trying numbers, even if some odd, some even	
	<i>n</i> odd implies n^3 odd and odd – odd = even <i>n</i> even implies n^3 even and even – even = even	A1 A1	or $n(n^2 - 1)$ used with <i>n</i> odd implies $n^2 - 1$ even and odd x even = even etc [allow even x odd = even] or A2 for $n(n - 1)(n + 1)$ = product of 3 consecutive integers; at least one even so product even; odd ³ - odd = odd etc is not sufft for A1	
			SC1 for complete general method for only one of odd or even eg $n = 2m$ leading to $2(4m^3 - m)$	3

-	(ii) = 1 ² /	-		
9	(i) $x + 3)^2 - 4$	3	B1 for $a = 3$, B2 for $b = -4$ or M1 for $5 - 3^2$ soi	
	(ii) ft their ($\neg a$, b); if error in (i), accept ($\neg 3$, $\neg 4$) if evidence of being independently obtained	2	B1 each coord.; allow $x = -3$, $y = -4$; or M1 for $\begin{bmatrix} -3 \\ -4 \end{bmatrix}$ o.e. oe for sketch with -3 and -4 marked on axes but no coords	5
10	$(x^2 - 9)(x^2 + 4)$	M2	or correct use of quad formula or comp sq reaching 9 and -4 ; allow M1 for attempt with correct eqn at factorising with factors giving two terms correct, or sign error, or attempt at formula or comp sq [no more than two errors in formula/substn]; for this first M2 or M1 allow use of y etc or of x instead of x^2	
	$x^2 = 9$ [or -4] or ft for integers /fractions if first M1 earned $x = \pm 3$ cao	M1 A1	must have x^2 ; or M1 for $(x + 3)(x - 3)$; this M1 may be implied by $x = \pm 3$ A0 if extra roots if M0 then allow SC1 for use of factor theorem to obtain both 3 and -3 as roots or $(x + 3)$ and $(x - 3)$ found as factors and SC2 for $x^2 + 4$ found as other factor using factor theorem [ie max SC3]	4

11	1/5 or 0.2 o.e. www	3	M1 for $3x + 1 = 2x \times 4$ and M1 for $5x = 1$ o.e. <u>or</u> M1 for $1.5 + \frac{1}{2x} = 4$ and	
			M1 for $\frac{1}{2x} = 2.5$ o.	3

12	$b^2 - 4ac$ soi	M1	allow in quadratic formula or clearly looking for perfect square	
	$k^2 - 4 \times 2 \times 18 < 0$ o.e.	M1	condone ≤; or M1 for 12 identified as boundary	
	-12 < k < 12	A2	may be two separate inequalities; A1 for \leq used or for one 'end' correct if two separate correct inequalities seen, isw for then wrongly combining them into one statement;	
			condone <i>b</i> instead of <i>k</i> ; if no working, SC2 for $k < 12$ and SC2 for $k > -12$ (ie SC2 for each 'end'	4
13	y + 5 = ry + 2r	M1	for expansion	
15	y + 3 = xy + 2x y - xy = 2x - 5 oe or ft	M1	for collecting terms	
	y(1-x) = 2x - 5 oe or ft	M1	for taking out y factor; dep on xy term	
	$[y =] \frac{2x-5}{1-x}$ oe or ft as final answer	M1	for division and no wrong work after	
	1 74		ft earlier errors for equivalent steps if error does not simplify problem	4