1	$2 x^{3}+9 x^{2}+4 x-15$	3	as final answer; ignore ' $=0$ '; B2 for 3 correct terms of answer seen or for an 8 -term or 6 term expansion with at most one error: or M1 for correct quadratic expansion of one pair of brackets; or SC1 for a quadratic expansion with one error then a good attempt to multiply by the remaining bracket	correct 8-term expansion: $2 x^{3}+6 x^{2}-2 x^{2}+5 x^{2}-6 x+15 x-5 x-15$ correct 6-term expansions: $\begin{aligned} & 2 x^{3}+4 x^{2}+5 x^{2}-6 x+10 x-15 \\ & 2 x^{3}+6 x^{2}+3 x^{2}+9 x-5 x-15 \\ & 2 x^{3}+11 x^{2}-2 x^{2}+15 x-11 x-15 \end{aligned}$ for M1, need not be simplified; ie SC1 for knowing what to do and making a reasonable attempt, even if an error at an early stage means more marks not available
2	$b^{2}-4 a c \text { soi }$ 1 www 2 [distinct real roots]	M1 A1 B1	or B2 B0 for finding the roots but not saying how many there are	allow seen in formula; need not have numbers substituted but discriminant part must be correct; clearly found as discriminant, or stated as $b^{2}-4 a c$, not just seen in formula eg M1A0 for $\sqrt{b^{2}-4 a c}=\sqrt{1}=1$; condone discriminant not used; ignore incorrect roots found

4	$n(n+1)(n+2)$ argument from general consecutive numbers leading to: at least one must be even [exactly] one must be multiple of 3	M1 A1 A1	condone division by n and then $(n+1)(n+2)$ seen, or separate factors shown after factor theorem used; or divisible by 2 ; if M0: allow SC1 for showing given expression always even	ignore ' = 0’; an induction approach using the factors may also be used eg by those doing paper FP1 as well; A0 for just substituting numbers for n and stating results; allow SC2 for a correct induction approach using the original cubic (SC1 for each of showing even and showing divisible by 3)

$\mathbf{5}$	$5(x+2)^{2}-14$	$\mathbf{4}$	$\mathbf{B 1}$ for $a=5$, and $\mathbf{B 1}$ for $b=2$ and $\mathbf{B 2}$ for $c=-14$ or $\mathbf{M 1}$ for $c=6-$ their $a b^{2}$ or $\mathbf{M 1}$ for [their $a]\left(6 /\right.$ their $a-$ their $\left.b^{2}\right)$ [no ft for $a=1]$

$\mathbf{6}$	$[a=] 2 c^{2}-b$ www o.e.	$\mathbf{3}$	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty

\(\left.\begin{array}{|l|l|l|l|}\hline 7 \& {[a=] \frac{2(s-u t)}{t^{2}} o.e. as final answer} \& 3 \& \begin{array}{l}M1 for each of 3 complete correct \\
steps, ft from previous error if \\
equivalent difficulty [eg dividing by t \\
does not count as step - needs to be \\
\left.by t^{2}\right] \\
{\left[condone[a=] \frac{(s-u t)}{0.5 t^{2}}\right]} \\
{[a=] \frac{(s-u t)}{\frac{1}{2} t^{2}} gets M2 only (similarly} \\

other triple-deckers)\end{array}\end{array}\right\} 3\)

8	any general attempt at n being odd and n being even even	M1	MO for just trying numbers, even if some odd, some even	
n odd implies n^{3} odd and odd - odd $=$ even n even implies n^{3} even and even - even $=$ even	A1	A1	or $n\left(n^{2}-1\right)$ used with n odd implies $n^{2}-$ 1 even and odd \times even $=$ even etc [allow even \times odd $=$ even $]$ or A2 for $n(n-1)(n+1)=$ product of 3 consecutive integers; at least one even so product even; odd - odd $=$ odd etc is not sufft for A1 SC1 for complete general method for only one of odd or even eg $n=2 m$ leading to $2\left(4 m^{3}-m\right)$	3

11	$1 / 5$ or 0.2 o.e. WWw	3	M1 for $3 x+1=2 x \times 4$ and M1 for $5 x=1$ o.e. or M1 for $1.5+\frac{1}{2 x}=4$ and M1 for $\frac{1}{2 x}=2.5$ o.	3

$\mathbf{1 2}$	$b^{2}-4 a c$ soi	M1	allow in quadratic formula or clearly looking for perfect square	
$k^{2}-4 \times 2 \times 18<0$ o.e.	M1	A2 condone \leq; or M1 for 12 identified as boundary may be two separate inequalities; A1 for sused or for one 'end' correct if two separate correct inequalities seen, isw for then wrongly combining them into one statement; condone b instead of $k ;$ if no working, SC2 for $k<12$ and SC2 for $k>-12$ (ie SC2 for each 'end' correct)	4	
$\mathbf{1 3}$	$y+5=x y+2 x$ $y-x y=2 x-5$ oe or ft $y(1-x)=2 x-5$ oe or ft $[y=] \frac{2 x-5}{1-x}$ oe or ft as final answer	M1 M1 M1 M1 M1 for expansion for taking out y factor; dep on $x y$ term for division and no wrong work after ft earlier errors for equivalent steps if error does not simplify problem	4	

